座長 日原政彦（工学搏士）九州工業大学4

JD18－1

PVDコーティングによる金型寿命の向上

日本エリコンバルザース（株）
－大崎隆史，福井 茂雄
自動車の軽量化ニーズが高まる中，鉄系部品に代わる軽量で寸法精度に優れたアルミダイカスト部品の需要 が非常に多くなっている。それにともない，アルミダ イカスト部品の価格競争力を強化するため生産性の向上が求められているが，それには金型寿命向上による ダウンタイムとメンテナンス時間の削減が必要となっ てくる。金型短寿命の要因となる焼き付き，ヒートチェ ック，溶損に対して，これまでBALINIT® ${ }^{\circledR}$ LUMENA， BALINIT®ALCRONA MODIFY などをコーティン グすることで鋳抜きピンや入れ子などの金型部品の長寿命化にユーザーから高い評価をいただいてきた が，さらなる長寿命化を実現すべく，新コーティングの BALINIT®FORMERAを使用した実績を紹介する。

JD 18－2

プラズマCVD法によるAl2O3膜の各種特性

オリエンタルエンヂニアリング（株）
－河田 一喜（工学博士），木立徹，小松 元是，清野裕太
量産型パルスDC－PCVD装置により各種試験片に $\mathrm{Al}_{2} \mathrm{O}_{3}$ 膜を被覆した。その試験片について，硬さ，組織，結晶構造，摩擦摩耗特性，アルミ合金溶湯中における耐溶損性および耐溶着性を未処理品，ガス窒化品，PVD法による各種硬質皮膜被覆品と比較検討した。

JD18－3

複合窒化処理した熱間工具鋼の金型特性

パーカー熱処理工業（株）
－石塚はる菜，高村 宏輔，渡邊 陽一（工学博士）
窒化の一つである新塩浴軟窒化処理では，その浴にリ チウムイオンを導入することで，最表面にはリチウム複合鉄酸化層，下部には窒化層が同時に形成される。 この酸化層は，後酸化（通常の窒化処理後に行われる酸化処理）で得られる酸化層に比べ，厚膜で緻密なため，耐溶損性が大きく向上することが知られている。とこ ろで，金型の要求特性の一つとして窒化深さがあるが， この窒化法での深い窒化層を形成する長時間処理は酸化層の剥離につながるため，困難である。そこで，従来 の窒化処理後に本処理を適用したところ，硬化層が深 く耐溶損性の高い処理ができることが分かった。本発表では，従来の窒化処理後に新塩浴軟窒化処理を施し た熱間工具鋼の組織とその特性について報告する。

JD 18－4

表面を強化する窒化処理による耐熱疲労性の向上

（株）カナック
－中曽修一，赤松薫，遠藤 詩織，堀越弘也
優れた耐熱疲労性を持つ窒化処理の考え方を紹介する。今回，微視的な目線を取り入れた新たな強化方法によ る窒化処理を行なうことで，従来よりも耐熱疲労性が向上することが分かった。近年行われている熱疲労対策として，窒化処理は実務においても有効であること が知られてきたが，窒化による熱疲労対策の機能向上 を望む声は，さらに増している。耐熱疲労性を向上す る手段として窒化処理は，「化合物層が少なく拡散層が薄いことが望ましい」と言う事が知られているが，今回 はその拡散層をさらに細かくとらえ，拡散層の中でも表面近傍を強化する窒化処理を行うことで従来よりも さらに熱疲労寿命を延ばす結果が得られた。従来の窒化方法とあわせ，検証を行なったので報告する。

座長 佐々木 英人 美濃工業（株）

JD 18－7

ダイカスト金型の品質安定化について

九州工業大学

－日原政彦（工学博士）
ダイカスト金型のキャビティ面は加熱—冷却の熱サイ クルに伴う熱疲労やクリープ特性並びに溶融金属との接触による溶損，焼き付きなどが発生する。これらの諸現象はダイカスト金型の品質安定性や寿命に大きく影響する。品質安定性を左右する要因としては金型素材，機械加工，電気加工（放電加工，溶接加工など），熱処理，表面処理などがある。ダイカスト金型の安定性並びに寿命向上はこれらの各プロセスにおける要因を解析し改善方法や有効な対策が必要になる。本報告は， ダイカスト金型の安定性に及ぼす金型材料，熱処理お よび加工面の熱的特性並びに溶融金属との現象解明か ら，安定性の高い金型を得るための手法について事例 を含めて述べる。

悲親会 11／8（木）17：30～19：00
 リストランテ アッティモ（展示会場2F）

熱間工具鋼SKD61に対する再ショットピーニングの検討

新東工業（株）
－小林 祐次（工学博士），松井 彰則
ショットピーニングは金属材料の疲労強度を向上させ る手法として自動車や航空機の部品に採用されている。 ダイカスト金型に対しても意匠面のヒートチェック対策や水冷孔からの割れを防ぐために用いられることが ある。過去の取組から使用中の金型に対し定期的にシ ョットピーニングをすること（以下，再ピーニング）で ヒートチェック発生を抑制できることが分かってきて いる。その効果を十分に得るためには再ピーニングの タイミングや回数（以下サイクル数）が大きく影響する と予想される。そのため再ピーニングの加エタイミン グや金型の評価方法の決定は重要である。本報では， ダイカスト金型が受ける疲労を模擬した試験を行い再 ピーニングの影響を調査した。

JD 18－6

ダイカスト金型の泠却孔割れ機構に

関する研究

（株）アーレスティ
－三浦 正樹（修士），折井 晋，駒木 重義，
青山俊三（工学博士）
（株）アーレスティ栃木
古塩 守
（株）アーレスティ熊本
井上裕朗，坂本 博
ダイカスト金型の冷却孔割れ機構について研究した。冷却孔割れは腐食環境で応力振幅を受けて発生する腐食疲労現象であると考えられる。回転曲げ疲労試験を用いて腐食環境下で冷却孔割れを再現する試験方法を開発し，泠却孔割れを防止するための各種対策につい て調査を行なった。また，実際のダイカストで泠却孔 からの割れを再現し，開発した簡易試験方法で得られ た結果の妥当性をダイカストテスト型で確認した。冷却孔割れ対策の一部については，量産で泠却孔から割 れが発生している入れ駒に適用し効果を確認した。

